Functional
Vector operation functions.
>>> from vector import vecadd
>>> a = (5, 6, 7)
>>> b = [2]
>>> c = range(4)
>>> vecadd(a, b, c)
(7, 7, 9, 3)
Prefixed by vec... (vector).
All functions accept vectors as single exhaustible iterables.
They return vectors as tuples.
The functions are type-independent. However, the coefficients used must support necessary scalar operations. For instance, for vector addition, coefficients must be addable.
For complete type safety a zero argument is available. Default is int(0).
Docstring conventions
Summary
Math notation (vector notation if possible, index notation, domain & codomain)
More information ("More efficient than ...").
Complexity
For a vector of length \(n\) there will be - \(x\) scalar additions (add), ...
Notes
Design choices
See also
Similar functions
References
Wikipedia, numpy, ...
creation
veczero = ()
Zero vector.
An empty tuple: ().
vecbasis(i, c=1, zero=0)
Return the i-th basis vector times c.
Returns a tuple with i many zeros followed by c.
Source code in vector\functional\creation.py
23 24 25 26 27 28 29 30 31 32 | |
vecbases(start=0, c=1, zero=0)
Yield all basis vectors.
See also
- for single basis vector:
vecbasis
Source code in vector\functional\creation.py
34 35 36 37 38 39 40 41 42 43 44 45 46 | |
vecrand(n)
Return a random vector of n uniform float coefficients in [0, 1[.
The coefficients are sampled from a uniform distribution in [0, 1[.
Notes
Naming like in numpy.random, because seems more concise
(not random & gauss as in the stdlib).
Source code in vector\functional\creation.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | |
vecrandn(n, normed=True, mu=0, sigma=1, weights=None)
Return a random vector of n normal distributed float coefficients.
The coefficients are sampled from a normal distribution.
Notes
Naming like in numpy.random, because seems more concise
(not random & gauss as in the stdlib).
Source code in vector\functional\creation.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
utility
veclen(v)
Return the length (number of set coefficients) of the vector.
Also works for single exhaustible iterables where len(v) wouldn't work,
altough the vector is gone then.
Source code in vector\functional\utility.py
9 10 11 12 13 14 15 | |
veceq(v, w)
Return if two vectors are equal.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be at most
- \(\min\{n, m\}\) scalar comparisons (
eq) & - \(|n-m|\) scalar boolean evaluations (
bool).
Source code in vector\functional\utility.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
vectrim(v, tol=1e-09)
Remove all trailing near zero (abs(v_i)<=tol) coefficients.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar absolute evaluations (
abs) & - \(n\) scalar comparisons (
gt).
Notes
- Cutting of elements that are
abs(vi)<=tolinstead ofabs(vi)<tolto allow cutting of elements that are exactly zero bytrim(v, 0)instead oftrim(v, sys.float_info.min). tol=1e-9like in PEP 485.
Source code in vector\functional\utility.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | |
vecround(v, ndigits=None)
Round all coefficients to the given precision.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar roundings (
round).
Source code in vector\functional\utility.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
vecrshift(v, n, zero=0)
Pad n many zeros to the beginning of the vector.
Source code in vector\functional\utility.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | |
veclshift(v, n)
Remove n many coefficients at the beginning of the vector.
Source code in vector\functional\utility.py
97 98 99 100 101 102 103 104 105 106 107 108 | |
hilbert_space
vecconj(v)
Return the elementwise complex conjugate.
Trys to call a method conjugate on each element.
If not found, simply keeps the element as is.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar conjugations (
conjugate).
Source code in vector\functional\hilbert_space.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | |
vecabs(v, weights=None, conjugate=False, zero=0)
Return the Euclidean/L2-norm.
Returns the square root of vecabsq.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar conjugations (
conjugate) (if selected), - \(n\)/\(2n\) scalar multiplications (
mul) without/with weights, - \(\begin{cases}n-1&n\ge1\\0&n\le1\end{cases}\) scalar additions (
add) & - one
sqrtcall.
Source code in vector\functional\hilbert_space.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | |
vecabsq(v, weights=None, conjugate=False, zero=0)
Return the sum of absolute squares of the coefficients.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar conjugations (
conjugate) (if selected), - \(\begin{cases}n-1&n\ge1\\0&n\le1\end{cases}\) scalar additions (
add) & - \(n\)/\(2n\) scalar multiplications (
mul) without/with weights.
Notes
Reasons why it exists:
- Occurs in math.
- Most importantly: type independent because it doesn't use
sqrt.
References
Source code in vector\functional\hilbert_space.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | |
vecdot(v, w, weights=None, conjugate=False, zero=0)
Return the inner product of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(\min\{n, m\}\) scalar conjugations (
conjugate) (if selected), - \(\min\{n, m\}\)/\(2\min\{n, m\}\) scalar multiplications (
mulwithout/with weights) & - \(\begin{cases}\min\{n, m\}-1&n\ge1\land m\ge1\\0&n\le1\lor m\le1\end{cases}\) scalar additions (
add).
Source code in vector\functional\hilbert_space.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | |
vecparallel(v, w, weights=None, conjugate=False, zero=0)
Return if two vectors are parallel.
Source code in vector\functional\hilbert_space.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
vector_space
vecpos(v)
Return the vector with the unary positive operator applied.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar unary plus operations (
pos).
Source code in vector\functional\vector_space.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |
vecneg(v)
Return the vector with the unary negative operator applied.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar negations (
neg).
Source code in vector\functional\vector_space.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 | |
vecadd(*vs)
Return the sum of vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(\min\{n, m\}\) scalar additions (
add).
Source code in vector\functional\vector_space.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 | |
vecaddc(v, c, i=0, zero=0)
Return v with c added to the i-th coefficient.
More efficient than vecadd(v, vecbasis(i, c)).
Complexity
There will be
- one scalar addition (
add) if \(i\le n\) or - one unary plus operations (
pos) otherwise.
Source code in vector\functional\vector_space.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | |
vecsub(v, w)
Return the difference of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(\min\{n, m\}\) scalar subtractions (
sub) & - \(\begin{cases}m-n&m\ge n\\0&m\le n\end{cases}\) negations (
neg).
Source code in vector\functional\vector_space.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | |
vecsubc(v, c, i=0, zero=0)
Return v with c added to the i-th coefficient.
More efficient than vecsub(v, vecbasis(i, c)).
Complexity
There will be
- one scalar subtraction (
sub) if \(i\le n\) or - one scalar negation (
neg) otherwise.
Source code in vector\functional\vector_space.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | |
vecmul(a, v)
Return the product of a scalar and a vector.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar multiplications (
rmul).
Source code in vector\functional\vector_space.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 | |
vectruediv(v, a)
Return the true division of a vector and a scalar.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar true divisions (
truediv).
Notes
Why called truediv instead of div?
divwould be more appropriate for an absolute clean mathematical implementation, that doesn't care about the language used. But the package might be used for pure integers/integer arithmetic, so both,truedivandfloordivoperations have to be provided, and none should be privileged over the other by getting the universaldivname.truediv/floordivis unambiguous, like Pythonoperators.
Source code in vector\functional\vector_space.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | |
vecfloordiv(v, a)
Return the floor division of a vector and a scalar.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar floor divisions (
floordiv).
Source code in vector\functional\vector_space.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
vecmod(v, a)
Return the elementwise mod of a vector and a scalar.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar modulos (
mod).
Source code in vector\functional\vector_space.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 | |
vecdivmod(v, a)
Return the elementwise divmod of a vector and a scalar.
Complexity
For a vector of length \(n\) there will be
- \(n\) scalar divmods (
divmod).
Source code in vector\functional\vector_space.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | |
elementwise
vechadamard(*vs)
Return the elementwise product of vectors.
Complexity
For vectors of lengths \(n_1, n_2, \dots, n_N\) there will be
- \(\begin{cases}(N-1)\min_in_i&N\ge1\land\min_in_i\ge1\\0&N\le1\lor\min_in_i=0\end{cases}\) scalar multiplications (
mul).
Source code in vector\functional\elementwise.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | |
vechadamardtruediv(v, w)
Return the elementwise true division of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(n\) scalar true divisions (
truediv).
Source code in vector\functional\elementwise.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 | |
vechadamardfloordiv(v, w)
Return the elementwise floor division of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(n\) scalar floor divisions (
floordiv).
Source code in vector\functional\elementwise.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 | |
vechadamardmod(v, w)
Return the elementwise mod of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(n\) scalar modulos (
mod).
Source code in vector\functional\elementwise.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 | |
vechadamarddivmod(v, w)
Return the elementwise divmod of two vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(n\) scalar divmods (
divmod).
Source code in vector\functional\elementwise.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | |
vechadamardmin(*vs, key=None)
Return the elementwise minimum of vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(\min\{n, m\}\) comparisons (
lt).
Source code in vector\functional\elementwise.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 | |
vechadamardmax(*vs, key=None)
Return the elementwise maximum of vectors.
Complexity
For two vectors of lengths \(n\) & \(m\) there will be
- \(\min\{n, m\}\) comparisons (
gt).
Source code in vector\functional\elementwise.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 | |